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1. INTRODUCTION

Consider the equation

n = 1,2, ..., (1.1 )

where the an's and bn's are regularly varying at infinity, i.e., there exists an
increasing positive sequence {)'n, n = 0, 1, ...,} such that

with

I· an 01m -;-=a> ,
n - oc, A. n

I
. bn
1m -=bE IR

n --to ,x: A. n '
(1.2 )

lim n ().~ + I - I) = IX ~ O.
n - oc ~;,n
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Furthermore we shall assume that a" + I > 0, b" E IR, n = 0, I, 2, .." and

I
, (a,,+I-a,,)
1m n . aex,

11---+ ex;. An
I
· (b,,+I-b,,) b
1m n. ex,

n - 00 An
(1.4 )

Polynomials orthogonal with respect to Freud and Erdos type weight
functions fall into this class and have been the subject of intense investigation,
see Nevai [10, II], Mate, Nevai, and Totik [9], Lubinsky and SafT [8],
Lubinsky, Mhaskar, and SafT [7], Geronimo and Van Assche [4J,
Van Assche [IS, 16], Rakhmanov [13], Lubinsky [5,6], and Smith [14].
Here we use the techniques partially developed in Van Assche and
Geronimo [17] to give strong asymptotics of polynomials whose
coefficients satisfy the conditions given by Eqs, (1.2 H 1.4). We proceed as
follows: In Section 2 we review the results needed from Geronimo and
Smith [3]. A useful result developed in [3] is the construction of continua
tions of the coefficients from the integers to all positive x having smooth
derivatives. In Section 3, using the Euler-Maclaurin formula and the
theory of regularly varying functions, we develop the asymptotic formulas
mentioned above. Finally, in Section 4 a number of examples are explicitly
worked out.

2. PRELIMINARIES

Given sequences {a,,}:~ I and {b,,}:~0 satisfying (1.2 )-( 1.4) we find from
the theory of regularly varying sequences (Bojanic and Seneta [2]) that
a", b", and )." can be represented as

where

a" = an~ II (n), and A" = n~/(n), (2.1 )

and

lim Idn) = lim 12 (n ) = I
,,~O I(n) ,,~oc l(n)

(2.2)

I, (/(n+ I) I) I' (/dn + I) 1)1m n - = 1m n
,,~oc I(n) ,,~oc Idn)

= lim n(12(n+l)_I)=0. (2.3)
,,~oc 12(n)

The functions l(n),/dn), and 12(n) are called slowly varying functions.
It further follows from the theory of regularly varying sequences
[2, Theorem 4] that

I, a[nt] t~1m --=
n-'Xl an

and (2.4 )
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for every t > 0 and this coupled with (1.4) implies that

lim n(a[nt]+l-a[nt])' =aIXt~-l,
n - ex) 12

and

lim n (b[nt] + 1 - b[nt]) = blXta -),
12_ -c:c )"'n

for all t > O.
In what follows we often need the interval
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(2,5)

(2.6)

[D, E] = convex hull ({O}, [b - 2a, b + 2a]), (2.7)

and always consider y ~ [D, E].

LEMMA 2.1 [3, Lemma 3.2]. Suppose (1.2) and (1.3) hold with a i -+ CD

and Ib i I -+ CD or b = O. If r:x = 0 we further suppose that

lim sup { max a
k

} = I = lim sup { max bb
k
},

l~k~nan O~k~n 12

b#O. (2.8 )

Then for y ~ [D, E] there exists ad> I such that for n sufficiently large

IUoP'nY, i)1 >d, i= 1, 2, ... , n,

IVo(A n Y, ill < lid, i = 1, 2, ..., n,

where

x-b J(X-b)2 1
uo(x, i)=-2. '+ -2I -1 =-(-')'a, a, Vo x, I

Consider now the continuous extensions of 11 and 12 given by

(2.9a)

(2.9b)

(2.10)

Li(x) = (Un + 2) - 2/i(n + 1) + li(n))(x - n)3 - (x - n)2)

+ (lA n + 1) -I; (n))( x - n) + Ii (n), n :::; x :::; n + 1, i = 1, 2,

(2.11 )

where for L)(x) we take n~ 1 while for L 2 (x) we let n~O.

LEMMA 2.2 [3, Lemma 3.7]. Let L 1 and L 2 be as above, then L 1
and L 2 are C 1 slowly varying functions, lim x _ oc (Lt(x)111([x]))= 1=
limx _ 00 (L 2(x)112 ([x])). If

IX ~O, (2.12 )
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r:J.~o, (2.13 )

where rx is given by (1.3) then

a" = aR I (n),

and

If rx > 0 then

1 f" 1 f"22 IR;CVWdy=o(l)=;:- IR;'(y)ldy,
n M n M

If rx = 0 and

i= 1, 2.

(2.14 )

(2.15 )

(2.1 6)

then (2.16) is still valid.

With the above results we can prove the following.

THEOREM 2.3 [3, Theorem 3.8]. Suppose y ¢ [D, E] and (1.2) through
(1.4) hold ~vith a i -> 00 and Ib i I -> r:f) or b = O. If rx > 0 or for rx = 0 if (2.8)
and (2.17) hold then

I· p"().,, y)1m _--=--:.:....:.....:.:..:.....c__

,,~ex: TI7= I uo(2" y, i)

={(X-b):-4a2}-1/4exp{~fL ds }, (2.18)
x 2 0 J(x-bs)2-4a2s2

uniformly on compact subsets ofC\[D, E].

3. ASYMPTOTIC FORMULAS

Theorem 2.3 allows us to compute strong asymptotics for
p"(A,,y)jTI7~1 uo(A"y, i). We now develop some formulas that help in the
evaluation of TI7~ I uo(2"y, i).

LEMMA 3.1. Suppose y ¢ [D, E] and (1.2) through (1.4) hold. If IX > 0
and

I
· (R) (n) - R2 (n» A
1m n 1 = IX ,

n - oc' An

(3.1 )
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where

145

and (3.2 )

then

I· nn Uo(An Y, i) (b J] dz )
1m • . =exp A ,
n~oci=]Uo(Any,I)' oJ(y-bz)2-4a2z 2

uniformly on compact subsets of C\ [D, E]. Here

U (A i)= A.ny-bRdi) J(AnY-bR t (i))2_
o nY, 2aR] (i) + 2aR] (i) 1.

Proof We write

(3.3 )

(3.4 )

where [x] is the integer part of x. The dominated convergence theorem,
(3.1), and the fact that

lim ndn= d = lim n In(l + dn) = d,
n-oc n-oo

imply that

I· nn Uo(Any,i) b II (1 y-bt~ )
1m = exp A ex +-r=====;===;=

n~oo i=1 uO()'nY, i) 0 J(y-bt~f-4a2t2~

t~ - 1 dt

x (y _ bt~) + J(y _ bt~)2 _ 4a2th .

Setting z = t~ gives the result. I
In order to treat the case ex =0 we need to make some stronger assump

tions on the recurrence coefficients.

LEMMA 3.2. Suppose IX = 0, y If [D, E], (1.2) through (1.4) hold with
ai~ 00 and Ibil ~ 00. Suppose (2.8) and (2.17) hold, that an is strictly
increasing for n sufficiently large, and that

If

640/72/2-2

lim an + 2 - an + 1 = 1.
n_oo an+1-an

(3.5 )

(3.6 )
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where Rdn) and R 2(n) are given by (3.2), then

lim fI Uo(AnY, i) ex (bBr dz ) (3.7)
n ~ Xl i~ [ !loP,,, y, i) p 0 J(y - bzf - 4a2z 2 '

where the convergence is uniform on compact subsets of C\ [D, E].

Proof Let R[ (x) and R 2(x) be the extensions given by Lemma 2.2 then

aR'dx) = (an + 2 - 2a" + [ + an)(3(x - n)2 - 2(x - n» + (an + [ - an)

n~x~n+1.

Since 0 ~ (x - n) ~ 1 for n ~ x ~ n + 1 and an is monotonically increasing
for n sufficiently large we see that R'l (x) > 0 for x sufficiently large. Thus
R 11 exists. Now write

(3.8 )

where

(3.9)

(3.11 )

From Lemma 2.1 we find for any compact set K c C\ [D, EJ an No such
that ITUn y, i)1 < 1 for all n ? No and i = 1, 2, ..., n. Therefore

where n? No. From (3.9) we see that

b
IT(A n y, i)1 =;:- O( IRdi) - R2 (i)l)

n

=~O(I R 1.(i)-R2 (i).!IRd i+l)_Rdi )I),
)'n Rdr+ 1)-R)(r)

and this coupled with Potter's bound [1, p. 25J, (3.6), and (1.4) imply that
the second term in (3.10) is 0(1). Set

. ( bR 1 (i»)2 2Rdif
QdAny,r)= y-~ -4a~,
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(3.12)r p. 'i)= b(Rdi)-R2(i)) [1 AnY-bRdi)].
I nY, 2aR di)uO (A ny,i) + AnQl(Any,i)

Now (2.9) implies that

IrUn Y, i) - r 1 Un Y, i)1 = 0((R2(i) - Rdi))2/An )

=0[( R 2(i)-R[(i) )2(Rdi + 1)-Rdi ))2].
Rdi+1)-Rdi) }'n

Therefore Potter's bound, (1.4), (3.6), (3.10) and the above equation imply
that

n n

L In(1 + rUn Y, i)) = L r[ (An Y, i) + 0(1).
;= J ;=1

An application of the Euler-Maclaurin formula (Olver [12, p. 285]) yields

n M-l n

L TdAnY, i) = L rdAny, i) +f rdA" y, x) dx
i= [ i~l M

1 1
+2 r [(A nY, n)+2rdAnY, M)

(3.13 )

where T1(AnY,X) is given in (3.12) with i replaced by x and M is chosen
sufficiently large. From (2.9) and (2.11) we find that there exists a C> 0
such that IQdAny,x)I>C for y¢[D,E], O~x~n, and n sufficiently
large. Therefore (1.4) and (3.6) imply that the third and fourth terms in
(3.13) are 0(1). For fixed M the same is true of the first term in (3.13).
Consequently

±TdA"y,i)=r TdAny,x)dx
i=l M

f
n ~

+ M (B2-B2(x-[x])) dx2rdAny,x)dx+o(1).

(3.14 )

Now differentiate r1().nY,x) twice with respect to x. Since IQdAny,x)1
> C for Y¢ [D, E], 0 ~ x ~ n, n sufficiently large,
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Therefore by Lemma 2.2 we see that the second integral on the right hand
side of (3.14) is 0(1). Choose M sufficiently large so that Rdx) is strictly
increasing for x ~ M, then

From (3.6) and the the fact Q1 is bounded away from zero we observe that

where Lemma 2.2 has been used to obtain the last inequality. Setting
z = Rdx) in (3.15) and using the fact that Rdx) has a unique inverse for
x~ M yields

R 1 (R1
1 (z) - R 2 (R 1

1(z»
f(z)= RdR11(z)+ 1)-RdR1

1(z»"

Equation (3.5) implies that

(3.16 )

(3.17 )

1
· Rdn+1)-R2(n+l) l' Rdn+2)-R2(n+2)
~ = ~ ~

n~:YO Rdn+ l)-Rdn) n~oo Rdn+ l)-R(n)
and since

Rdx+ 1)-Rdx)
Rdn+ 1)-Rdn)

=(R1(n+3)-R(n+2) 2(Rdn+2)-R1(n+ 1» + 1)
Rdn+ l)-Rdn) R(n+ l)-R1(n)

x«x-n)3_(x-n)2)

+(Rdn + 2)-R(n+ 1) -1) (x-n)+ 1, n~x~n+ 1,
R1(n+ l)-Rdn)
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by (2.11) we see that
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(3.18 )]. R,(x)-Rz(x)
1m =B.
x~ocRI(x+l)-R,(x)

Set z = Rdn) u in (3.16) to find

b rdn ) f(z) dz

An R,(M) .j(y- bZ/An)Z -4aZzz;;.;
bRdn) JI f(Rdn) u) du

= -..1.-n- RdM)IRdn) J(y - (bR I(n)/..1. n) uf - 4azR 1 (nf uZ/..1.;'

Since Iimn~ocR;-I(Rdn)u)=oo for every u>O, (3.18), (1.2), and the
dominated convergence theorem give the result. I

We shall now develop a formula for TI7~ I uo(..1.ny, i).

LEMMA 3.3. Let R I(x), x> 0, be any C 1 extension of R I(n) where
an=aRdn) (n= 1,2, ... ) such that (2.16) is satisfied. Then for y¢ [D, E]

I· TI7= I (a;/a..1. n) UO(..1. ny, i) A1m = -
n~ ao u(R I (n)/..1. n t+ liZ K(n) y'

where the convergence is uniform on compact subsets of C\ [D, E]. Here

and

If R I(x) has an inverse for x;;::: 0, then the above integral can be recast into

Proof We begin by writing

)
dz

1 -.
z

(3.21 )
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Using the Euler-Maclaurin formula we find

where

(3.22 )

Now

bR I (x)
f(x)=y---+

)'n
(3.23 )

and since IQ[(x)! >0 and If(x)1 >0 for n sufficiently large we find by
differentiating (3.24) that

I~ I f( )1 = 0 (I R~(x)1 + R; (Xf )
d 2 n x 1 '2'

X An An

Equation (2.16) and the above equation imply that

If we integrate the first integral on the RHS of (3.22) by parts we find

fn ( (Rdn))) ( (Rd l
)))I lnf(x) dx = n In 2au --;:;:- -In 2au ---;:;;-

fn (Y ) R'dx)
+I

X Qdx)-I R[(x)dx.

To arrive at the last integral we have used the fact that

_1_ = Y - bR[ (X)/A n - J(y - bR[ (x)/Anf - 4a 2(R[ (x)/A~f

f(x) 4a2(R I (x)/A~f

(3.26 )
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For large n we find that

which implies that

fn (Y )R'I(x) fll (V ) R'dx)x ---1 --dx= x -'--I --dx+o(1).
I QI (x) R l (x) 0 QI (x) R I (x)

Combining (3.27), (3.26), (3.25), and the fact that
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(3.27 )

gives the result with K(n) given by (3.20). If R II (x) exists for x ~ 0 then
the change of variables z = R I (x)/R dn) gives (3.21). I

Remark 3.4. If R I (x) is a C I extension of R I (n) so that (2.16) is
satisfied and there exists an integer M such that R II (x) exists for all x ~ M
then (3.21) is still true if we replace R I (0) by R I (M).

Although in the above lemma we have used the exact inverse of R I , i.e.,
R II such that for all x ~ 0, R II (Rdx)) = x, it may be more convenient to
use a different asymptotic inverse. We say that Rt is an asymptotic inverse
of R I if lim<~ce (Rt(Rdx))/x)= 1. This implies that Rt and R I

1 are
asymptotically equivalent.

LEMMA 3.5. Let Rt(x), defined for x ~ R( (0), be an asymptotic inverse
of R) (x). If

(3.28)
x-x

then

lim K(n) = 1
n~ceK*(n) ,

where K(n) is given by (3.21) and K*(n) is given by the same formula with
R I

1 replaced by Rt.

Proof From (3.20) we find that
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gn(Z)=( Y -I)!.
J(y -bRdn) z/)'nf -4a2(Ri(n) Z2/).~) Z

Since (3.28) implies that lim x _"" IRt(x)-R,I(X)1 =0 and since gn(z) is
integrable for all n the result follows from the dominated convergence
theorem. I

We will now obtain a formula for n7~ I aj)'n- Before doing this,
however, we need one more technical lemma.

LEMMA 3.6. Suppose an satisfies (1.2) and (1.4) and an --+ 00. Let R 1 (x)
be the extension given by Lemma 2.2. If a> 0 or if a = 0 and

f lai+2-2;i+l+ a;\<00,
i= I 1

then

foo IR'(X)12 fCO IR"(X)I-- dx=o(l)= -- dx.
n R(x) 0 R(x)

Proof From (2.12) we see that

, aR(x) ~ I

R(x)=--+x L(x),
x

and

(3.29)

(3.30)

R"(x) = IX(IX - I) R(~)+IXX~ - I L'(x) +x~L"(x). (3.31)
x

Consequently we find that

f "" \R'(X)12 ( foo dx "" fi+l IL'(X)\2 )-- dx~2 IX 2"+ L -- dx .
n R(x) n x ,~n; L(x)

(3.32 )

Now (2.11) tells us that

L'(x) «ci + 1 - c i )/II(i»(3(x - 02 - 2(x - 0) + c,//I(i)

L(x) =«C i +l - cJll l (i»(X - 03
- (x - 02)+ (c,// l (i))(X - 0+ l'

i~x~i+ I, (3.33)

where

ci = ldi + 1) -ldO· (3.34)
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Since c;//] (i) -+ 0 as i -+ 00 by (2.3) we see that IL(x)1 > r > 0 for x large
enough. Therefore

f
i+ 1 I L'(x) 1

2
dx = 0 ((II (i + 2)

i L(x) Idi+ I)
1)2 (/d i + 1)

+ II (i)

which implies via (2.3) that the second term in (3.32) is 0(1). To show the
second part of (3.30) we note that from (3.31) we find

I
R"(X)I a(a-I) ,L'(X)' jL"(X)1-- ~ +a -- + -- .
R(x) x 2 xL(x) L(x)

From (3.33) and (3.34) we see that the second term in (3.35) is

(3.35)

Therefore

f
x IL'(x) I .00 fi+ I IL'(x) I-- dx= L: -- dx=o(l)
n xL(x) i~n i xL(x)

from (2.3). Since

(3.36 )

/
L"(X)! ~CICi+I-Cil,
L(x) ll(i)

for i large enough (3.34) implies

i~x~i+l,

Thus from (2.1), (2.3), and if a = 0 (3.29),

f ooIL"(X)/ x fi+IIL"(X)1-- dx= L: -- dx=o(I).
n L(x) i=n i L(x)

Consequently the lemma is proved. I
With this we can prove the following lemma.

LEMMA 3.7. Let an = aR l (n) and suppose R l (x) is any C 1 extension of
R 1(n) such that R 1 (x) # 0 for all x greater than or equal to one and such
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that (3.30) holds. (The second condition holds for the extension given by
Lemma 2.2 provided a> 0 or for a = 0 provided (3.29) holds.) Then

Here

fn R; (x)
A(n)=exp x--dx.

I Rdx)

Proof By means of the Euler-Maclaurin formula we have

Integrate the first integral by parts to find

f
n fn R' (x)

In R I (x) dx = n In R I (n ) - In R 1 (l ) - X _I- dx.
1 1 Rdx)

From (3.30) it follows that the integral

(3.37)

(3.38 )

(3.39 )

converges, which gives the desired result. I
Remark. If R I (n) has an analytic extension satisfying the hypothesis of

the above lemma then one may be able to obtain other integral representa
tions for the term on the right hand side of (3.37) (see Olver [12, p. 291]).

Combining these results leads to the two main theorems of this section.

THEOREM 3.8. Suppose (1.2) and (1.4) are satisfied with a> O. If
an=aRdn) and bn=bR2 (n) are such that (3.1) holds, if Rdx), x~O, is a
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c' extension of R I (n) such that R, (x) > 0 for x ~ 1, and if (2.16) and (3.30)
hold, then

l' Pn().n Y)
n~mx «aAn/an) u(R j (n)/AnW K(n) A(n)(a,/aAn)'i2

R Jau(R, (n)/I. n ) {b ( 1) f' dz }
= (y_b)2_4a2)li4exp A +2 0 J(Y-bzf-4a2z2 '

where the convergence is uniform on compact subsets of C [D, E]. Here

R - (_!X(B2-B2(X-[X]))dx21 R ( )d)
- exp 1 2 dx2 n ,x x ,

A(n) is given by (3.38), K(n) by (3.20), and u(R1(n)/).n) by (3.19). If R 1(x)
has an inverse for x ~ 0 then (3.21 ) may be used in place of (3.20). If R i(x)
is defined for x ~°and is any other asymptotic inverse such that (3.28) holds
then K(n) may be replaced by K*(n) where

K*(n) = expr . Ri(R, (n) z)
RI<O)iRl<n)

( y )
d.z1 -.
~

(3.40 )

Proof The result follows from Theorem 2.4 and Lemmas 3.1, 3.3, 3.5,
and 3.7. I

THEOREM 3.9. Suppose (1.2) and (1.4) are satisfied with 0:=0. Suppose
ai~ 00, Ib;1 ~ 00, and (2.8) and (3.5) hold. Suppose R, (n) and R 2(n) »,here
an = aRdn) and bn= bR2(n) have C 1 extensions such that (2.16), (3.18), and
(3.30) hold. Then

lim ..,.,.-_P:-:nc...c('--A:.:::ny.....:.) ---,,-,;;:
n~x (u(Rdn)/)'nlr K(n) A(n)(a,/aAn )1/2

_RJau(R1(n)/An) {b( l)fl dz }
- 2 2 114 exp B +- J '« y - b) - 4a ) . 2 0 (y _ bz )2 - 4a2 Z2

uniformly on compact subsets ofC\[D, E]. Here R, K(n), A(n), u(R I (n)/A)
are as in the previous theorem. If R 1 (x) has an inv~rse for x ~ 0, then (3.21)
may be used in place of (3.20). If Ri(x), defined for x ~ 0, is an asymptotic
inverse of Rdx) such that Iim x _. x IRr(Rt(x))-xl =0, then K(n) may be
replaced by K*(n) where K*(n) is given by (3.40).

Proof The result follows from Theorem 2.4 and Lemmas 3.2, 3.3, 3.5,
and 3.7. I
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4. EXAMPLES

As a first example we take an = ana, n ~ 1, bn= bna, n ~ 0, and
;'n=na. In this case an/aA n=1 and u(R I(n)/A n)=u(l)=(y-b)/2a+
J(y-h)/2a)2-1. From (3.20) we see that K(n)=H(n)e- na where

( JI I )H(n) = exp nyrx dz .
o J(Y-bza)2-4a2z2a

Instead of using Lemma 3.7 we can evaluate directly

fI ~= fI i:= (21t~rI2 (1 +0(1».
;=) aA n ;=1 n e

Consequently from Theorem 3.8 we find

which was first found by Van Assche and Geronimo [17].
For a second example we consider an = a In(n + 1), n ~ 1, bn=

b In(n + 1), n ~ 0, and An = In(n + 1). Again, an/a)'n = 1 and u(Rdn)/An) =
u(l). From (3.21) with RI(O) replaced by R)(I) we find

fl (Y) dzK(n)=exp (e ln(n+l)z_l) -1-
In2/1n(n+l) J(y-bz)2-4a2z 2 z

= H(n)/A(n),

where

( J
l 1 dZ)H(n)=exp Y (eln(n+l)Z_l) -,

In 2(ln(n+ I) J(y- hzf -4a2 z2 z
(4.1 )

and A(n) is given by (3.38). If we use the Abel-Plana formula for
L7~ 1 In In(i + 1) (Olver [12, pp. 290-291 ]), then we find that

(
leD d

2
)

R=exp -2{ (B2-B2(x-[x]»dx2InRdx)dx

_ (feD Imlnln(2+iy) d)
- exp 2 27ty 1 y.

o e-
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Theorem 3.9 thus yields

157

l' ~Pn(A'nY) R~ (b II dz )
n~m", u(lt H(n) = «y_b)2_4a2)1/4

ex
P 2 0 J(y-bz)2-4a2z2 .

(4.2)

As a final example we consider for 0 < 0( < 1, an = a)'n, n ~ 1, bn= bAn'
n~ 1 where An=nexp(lnn)~. In this case RI(x)=xexp[(lnxt], and K(n)
and A(n) are given by (3.20) and (3.28), respectively. By comparison with
the Abel-Plana formula for 1:7~ 2 [In i + (In W] we see that

( If"" d
2

)R=exp -2 I (B2-B2(x-[x]))dx2InRl(x)dx

= (2f"" Im(1n(2+iy)+(ln(2+iyW) d')
exp 2trv 1 } .

o e '-

Combining gives

(4.3 )

Ap(AnY)
u(l t H(n)

where

R~ (bf dz )
2 2 1/4 exp - ,

«y-b) -4a ) 2 J(y-bz)2-4a 2z2
(4.4)
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